Exploiting Open Source Tools for FPGA
Design Flow

Author 1*, Author 2*, Author 3*

Abstract—The escalating demands of data processing applica-
tions have propelled Field Programmable Gate Arrays (FPGAs)
into the forefront of programmable accelerators in modern
computing systems. FPGA architectures must be meticulously
designed to seamlessly integrate with other computing resources
to optimize processing efficiency for specific domains. Never-
theless, developing and deploying customized FPGAs remains a
costly and intricate undertaking, even for established industrial
firms. This paper demonstrates a fully free, open-source software
(FOSS) for the FPGA design flow. Here, all the open-source tools
are installed and packaged as a container and integrated with a
federated platform for easy access to the users. The results show
that the end-to-end resource allocation for reserving the FOSS
container is around 11sec.

Index Terms—Docker, Containers,
Jupyter Notebooks, Yosys, Nextpnr.

FPGA, Open-source,

I. INTRODUCTION

A field-programmable gate array (FPGA) is a semicon-
ductor device that can be programmed after manufacture to
perform a specific application design, typically specified as
a digital logic system. Since their introduction, there has
been rapid growth, and they have become a popular digital
circuit implementation. Lately, FPGAs have been extensively
used in the field of Artificial Intelligence, specifically in
the implementation of Deep Learning and Neural Networks
harnessing their acceleration capabilities [1]. FPGAs play a
major in next-generation networks (e.g., 5G and beyond), for
example, [2] implemented various 5G functions like the Low-
PHY functions.

FPGAs are becoming increasingly prominent as pro-
grammable accelerators in a wide range of modern computing
systems as the demands of data processing applications con-
tinue to increase. Modern FPGAs have millions of logic ele-
ments that require the use of Hardware Description Language
(HDL) and Computer Aided Design (CAD) tools to program.
The software flow (CAD flow) takes an application design
description in a Hardware Description Language (HDL) and
converts it to a stream of bits that is eventually programmed
on the FPGA. Converting a circuit description into a format
that can be loaded into an FPGA can be roughly divided into
five distinct steps: synthesis, technology mapping, input-output
(io) mapping, placement, and routing.

It is well known that the FPGA’s performance highly
depends upon the incorporated design flow. Access to FPGA
silicon is generally available through closed-source Computer
Aided Design (CAD) tools provided exclusively by the FPGA
vendor. In addition, a significant challenge in adopting FPGAs
licensing model, unlike other computing devices, FPGA users

must pay an ongoing license fee to the vendor in order to
program and utilize the hardware. Moreover, this restriction
applies even in cloud environments [3], where users must
acquire a license before effectively utilizing a rented FPGA
cluster. This licensing barrier poses a major hurdle for many
potential FPGA users, limiting their ability to leverage the full
capabilities of this powerful technology. The current FPGA
market is saturated by closed-source vendor-specific tools.

By eliminating these licensing hurdles, FPGAs could
achieve greater adaptability and enable a wider range of users
to harness their processing power. Transitioning to an open-
source design flow presents a promising approach — however,
it has its own challenges to overcome. The development of
such tools requires a deep understanding of the underlying
hardware, which is often kept as a closed loop. Due to
this, projects like OpenFPGA [4] are limited to building
customizable architectures rather than full-flown CAD tools.
Even though the OpenFPGA has the potential to evolve
into a complete CAD flow by containing components for all
necessary design flow stages, including yosys, Versatile Place
and Route (VPR), and a bitstream generator.

As of now, most of the FPGA vendors do not supply an
open-source toolchain. The available open-source CAD tools
work only well for small designs; any real-world useful design
will take an eternity to synthesize with higher resource uti-
lization when compared to vendor-provided solutions. Open-
source tools require a lot of optimization for efficient resource
utilization. The good thing with Open-source tools is that
they are cross-platform and, therefore, release developers from
being tied to a single vendor. Their developments may be
easily migrated from one hardware to another, even from
different manufacturers.

This paper demonstrates a toolchain built from various
open-source tools to automate the FPGA design flow. The built
toolchain is containerized as a Jupyter docker notebook and
integrated into a federated platform. A federated platform that
enables its users to log in and reserve the available hardware
resources like CPU, GPU, and FPGA for their tasks.

II. RELATED WORK
This section describes the currently available open-source
EDA tools:
(i) Synthesis: The Odin II tool' is used for Verilog synthesis.
Odin II accepts a synthesizable subset of Verilog and supports
hard-IP such as the block-RAMSs, carry-chains, and multipliers

! github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/odin_ii

Synthesis PR + Arch Bitstream Packing Bit-file Dumping
ODIN II + ABC olif OpenFPGA-Bitstream iceprog
(for lattice ice boards)
—DI icepack
; - openFPGALoader
YosyS +ABC Jjson nextpnr {—DI fasm2frames + xc7frames2bit I (fo? - boards)
I —Dl others
-]]]
Database icestorm prixray mistral pritrellis
(Lattice ice40) (Xilinx Arty 10) (Intel d10-nano) (Lattice ECP5)

Fig. 1. FPGA Design Flow using Open Source Tools

present in VTR architectures, but can only produce Berkeley
Logic Interchange Format (BLIF) netlists primarily used in
research. In addition, the yosys [5] tool is also used for verilog
synthesis, however, GHDL plugins are used to make VHDL
synthesis possible.

(ii) Place and Route: Versatile Place and Route (VPR) has
been a mainstay of academic research, which is a part of the
VTR [6] stack. VTR architectures are described theoretically
using the XML format, detailing the (proportional) makeup
and layout of soft and hard blocks on the targeted FPGA.
It uses architectural parameters such as the number of LUT
inputs and their local and global routing connectivities.

(iii) OpenFPGA: OpenFPGA [4] is also an opensource tool
which can be used for end-to-end FPGA flow but it uses VTR
stack under the hood, making it unsuitable for Commercial
Off The Shelf (COTS) FPGAs. It follows an agile approach
for prototyping and offers Verilog-to-bitstream generation and
verification.

The following section elaborates more on the open-source
tools available for FPGA design flow.

III. OPEN SOURCE ToOLS FOR FPGA DESIGN FLoOw

Figure 1 depicts the built open-source flow. The components
that we have used are marked in light green. The step-wise
component’s description is as follows:

(i) ABC, Yosys —- Synthesis: ABC [7] is a powerful and
versatile technology mapping software designed for synthe-
sizing and verifying binary sequential logic circuits commonly
encountered in synchronous hardware designs.

Yosys [5] is a freely available verilog elaborator tool
for designing digital circuits. It supports a wide range of
Verilog features and can be used to create both FPGAs
and ASICs. Yosys combines various optimization techniques,
including ABC for logic optimization and cell mapping, to
efficiently transform Verilog code into optimized circuits. A
typical FPGA design flow using Yosys involves coarse-grain
optimization, generic cell inference, and architecture-specific
technology mapping. Yosys currently supports synthesis for
the Xilinx 7-series, Lattice iCE40, Lattice ECP5, Intel (Stratix,
Max, Arria series) families and many more.

(iii) nextpnr — pack, place, route: nextpnr [8] is a freely
available, timing-driven place-and-route tool for FPGAs. It

differs from many existing tools in that it describes architec-
tures using an Application Program Interface (API) rather than
formats like XML. In other words, nextpnr is a more flexible
and extensible tool than many existing place-and-route tools.
This is because the API allows for more nuanced descriptions
of FPGA architectures. As a result, nextpnr is able to support
a wider range of FPGA devices and architectures.

(iv) Architecture Database: Various projects that Yosys or
some third party starts have used the aforementioned APIs for
various boards: Project IceStrom? for Lattice iCE40, Project
Trellis® for Lattice ECPS, Project Mistral* for Inter Cyclone
V, Project Xray® for Xilinx Arty-7 and many more.

(v) Bitstream Packer: Tools like icepack, ecppack,
fasm2frames & xc7frames2bit, etc are used to convert the
.asc file — ASCII format — produced by nextpnr to .bit
file that can be loaded into the FPGA.

(vi) openFPGALoader: OpenFPGALoader [9] is a universal
utility for programming FPGAs. It is compatible with major
manufacturers’ boards, cables and FPGA (Xilinx, Altera/Intel,
Lattice, etc).

Choose the resource type

@:E vVirtualized FPGA Resources

Virtualized GPU Resources

{EDE Virtualized CPU Resources

Fig. 2. Available Resources on the Federated Platform

IV. FEDERATED RESOURCES

This section describes the federated testbed designed for
users to access the CPU remotely, GPU, and FPGA resources
located in the Lab. The FPGAs are connected to servers where
the virtualized FOSS containers are created to access the
FPGA boards with the help of Ethernet/JTTAG. A Federated
testbed is a platform that allows users to register and log in

2github.com/YosysHQ/icestorm
3 github.com/YosysHQ/prjtrellis
“github.com/Ravenslofty/mistral
3 github.com/f4pga/prjxray

CCID
X
-r-> Q

£\ o

Resource
Allocation @

Resou_rce Check -Resource
Selection @ Availibitly @
CPU/GPU/FPGA

— O O

Fig. 3. Federated Platform cycle

Experimenter

Authentication @

from a remote location, reserve available hardware resources,
and use them to complete their tasks. Fig 3 shows the available
different resources that the users can reserve for their experi-
mentation. The platform is built using the MERN (MongoDB,
Express.js, React.js, Node.js). It uses Docker volumes to store
a user’s work when logged out and restores the storage when
logged in. The steps in detail are as follows:

1) User Authentication: The registered users can log in
using the credentials provided by the administrator. For
security, passwords are transformed into a protected,
coded format and stored in the testbed’s database. The
user authentication code is written in Node.js, and all the
databases are handled through a local MongoDB cluster.

2) Resource Selection: Once a user is successfully authenti-
cated, their name and password are saved in JWT tokens
for future use. Later, the user is taken to a page showing
available hardware resources such as CPU, GPU, and
FPGA (shown in Fig 3). The user can choose the
resource they want and is then directed to the available
notebooks for the chosen resource.

3) Confirmation of Resource Availability: After selecting
the type of hardware resource, the user needs to allocate
a certain amount of the resource regarding memory and
CPUs. The user will be shown the available resources
of that type and can only allocate that amount.

4) Resource Allocation: To start a Jupyter notebook with
specific details like the resource type, notebook type,
and resource quantity, the process involves retrieving the
user’s username and password from the JWT tokens. The
user will then use their password to begin the Jupyter
Notebook.

V. EXPERIMENTAL RESULTS

This section describes the comparison of the performances
of Yosys and the vendor tools while synthesizing a program to
dump on FPGA. A basic RISC processor design by the name
of RISC_posedge_clk6 is used to evaluate the results.
The design is modified by removing Reg Wires as output
in the RISC_core_mem_top.v to build the design for
Lattice ICE40 boards. The default settings were used for all
the synthesizers. All the settings in the Yosys synthesizer
are defaulted except for the device family. For synth_xilinx,
cascading DSPs are turned off (even though no DSP blocks are
required for this design), and abc9 [10] technology mapping
is used. Fig 4 shows the result obtained by using open-source
tools like yosys and vendor tools (Lattice, Xlinix).

The results show the open-source tools take higher logic
elements compared with vendors tools. Here, the open-sources
tools are in the early stage of development and are not

6 github.com/tangxifan/micro_benchmark/tree/main/processors

B Vendor [Yosys

Logic Elements

iCE 40
Fig. 4. Logic Elements Utilised (Lower is Better)

ECP5-5g Arty7 T100

optimised yet. However, recent advancements with abc9 look
promising for the open-source community. Moreover, we
observed that open-source tools consume high time for com-
pilation. On the other end, the vendor-supported tools are able
to synthesize in very less for the same design. The end-to-end
federated platform is tested by allowing 20 users to log in and
reserve a container concurrently. The values in table I show
each component’s execution time, and their low values signify
a better user experience.

Function Time Taken[s]
Experimenter Authentication 0.820
Resource Selection [CPU/GPU/FPGA] | 0.177
Confirmation of Resource Availability | 0.045
Resource Allocation 10.431

TABLE I
TIME TAKEN FOR EACH FUNCTION

VI. CONCLUSION AND FUTURE WORK

This paper demonstrates how free, open-source software
(FOSS) tools can be utilised for FPGA design flow. The results
show the FOSS advanced tools may closely perform to vendor
tools. However, there is a strong effort needed to optimize the
FOSS tools in order to reduce compilation time and memory
utilisation during the design time. The future work will focus
on exploiting FOSS tools more FPGA boards and looking
towards adopting Open Hardware chips for FPGA designs.

REFERENCES

[11 K. Liu, E. Borjeson, C. Higer, and P. Larsson-Edefors, “FPGA Imple-
mentation of Multi-Layer Machine Learning Equalizer with On-Chip
Training,” 2023, p. M1F.4.

[2] J. C. Borromeo, K. Kondepu, N. Andriolli, and L. Valcarenghi, “FPGA-
accelerated SmartNIC for supporting 5G virtualized Radio Access
Network,” Computer Networks, vol. 210, p. 108931, 2022.

[3] R. Skhiri, V. Fresse, J. P. Jamont, B. Suffran, and J. Malek, “From fpga
to support cloud to cloud of fpga: State of the art,” International Journal
of Reconfigurable Computing, vol. 2019, p. 8085461, Dec 2019.

[4] X. Tang, E. Giacomin ef al., “OpenFPGA: An Open-Source Framework
for Agile Prototyping Customizable FPGAs,” IEEE Micro, vol. 40, no. 4,
pp. 4148, 2020.

[5] YosysHQ. Yosys Open
https://github.com/YosysHQ/yosy.

[6] “Verilog to Routing — Open Source CAD Flow for FPGA Research,”
https://github.com/verilog-to-routing/vtr-verilog-to-routing.

[7]1 R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 24-40.

[8] D. Shah, “YosysHQ/nextpnr: nextpnr portable FPGA place and route
tool,” https://github.com/YosysHQ/nextpnr, (Accessed 11-2023).

[91 G. Goavec-Merou, “Universal utility for programming FPGA,”

https://github.com/trabucayre/openFPGALoader, (Accessed 11-2023).

B. L. Barzen et al., “Narrowing the Synthesis Gap: Academic FPGA

Synthesis is Catching Up With the Industry,” in In. Proc of DATE, 2023,

pp. 1-6.

Synthesis System.

(10]

