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Abstract—Autonomous navigation, while still facing a lot of
challenges, has become a reality in the last few years. It has
been successfully deployed in limited environments, showing the
potential such technologies offer. The availability of increased
computational power, coupled with advances in machine learning
techniques, including deep learning, have enabled this success.
However, there are many challenges that need to be overcome
to enable massive adoption of autonomous navigation in all
environments. One such challenge is to provide reliable, low-
latency, and cost-effective data processing solutions for compute-
heavy applications. To address this challenge, data processing
near the data source, that is, at an edge cloud has been proposed.
In this paper, we share our experience in implementing one such
edge cloud, designed to bring compute power close to resource-
constrained end devices in an autonomous navigation testbed,
named as Technology Innovation Hub on Autonomous Navigation
and Data Acquisition Systems (TiHAN). By considering some
use cases, we show how deploying this edge cloud at the testbed
has greatly benefited the performance of autonomous navigation
applications.

Index Terms—Edge-compute, Edge-cloud, Kubeedge, testbed,
Autonomous navigation, MEC, UAV resource monitoring, Pedes-
trian detection, Obstacle detection

I. INTRODUCTION

Over the last few years, there has been an enormous interest
in autonomous navigation applications such as assisted driving,
automated driving, delivery of goods via drones, etc [1]. There
is a huge potential for these technologies, including human-
itarian applications - from delivering essential medicines to
remote areas, to aid in disaster relief works [2]. A drone or
an Unmanned Aerial Vehicle (UAV) carrying out such a task
would require access to not just satellite positioning system
information, but would also need actively to learn about its
surroundings to avoid obstacles and navigate safely.

One way this could be achieved is by image inference, with
a camera on-board the UAV or UGV capturing images. These
images need to be processed in near-real-time if navigation is
to be achieved. Navigation and automated driving applications
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are extremely sensitive to delays in such processing. Such
real-time or near-real-time inference is compute-heavy and
typically requires access to a Graphical Processing Unit (GPU)
for optimal processing [3].

However, mounting these resources on a drone is impracti-
cal. GPUs are power-hungry, taking away limited and valuable
battery power required for the flight of the UAV itself. In
addition, adding these resources increases the weight of the
UAV, decreasing its flight times. As newer hardware becomes
available, it is impractical to replace the older hardware on
these UAVs and UGVs. A similar case can be argued for
Unmanned Ground Vehicles (UGV). While not as resource-
constrained as UAVs, they are prone to some of the same
problems.

Offloading these compute-heavy applications to a cloud is
one option. However, public clouds are typically located in
far-off places increasing the network latency from the source.
This latency is directly related to the distance of the cloud
from the source application and will only increase in case of
a congested network. Achieving reliable, low-latency, and low-
cost compute off-load is the key to enabling these applications.

As an alternative edge cloud moves the processing of data
closer to the sources while doing away from the public cloud.
Numerous technological benefits are inherent to this, including
decreased latency, security, flexibility, and greater reliability to
the applications. For instance, the edge cloud enables devices
at (or close to the) network edge to instantaneously alert key
personnel and equipment about mechanical problems, security
risks, and other crucial situations so that prompt action can be
taken.

The focus of the current paper is to present the work we
have done in deploying a Multi-access Edge Cloud (MEC)
(more details in sections II and III). This MEC was then
used to provide services to compute-heavy, latency-sensitive
autonomous navigation applications (more details in Section
IV). We then present the results while using MEC, and
compare them with the results obtained by using the public



Fig. 1. TiHAN Testbed Layout

cloud and onboard processing. Section V validates our efforts
in building the MEC. Our results show significantly better
performance when the MEC is used. With this in hand, further
work is described in Section VI.

II. BACKGROUND

This section describes related work and our proposed MEC
features.

In [4], the authors described democratizing the network
edge, which focuses on the edge and discusses about the
gaps to be filled at edge and access networks by exploiting
open source initiatives in order to broaden to the area of
research, and offers real-time insights. In [5], the authors
compared Amazon AWS and Microsoft Azure edge computing
platforms. This study shows that how both platforms offer
equal performance for common workloads utilised in edge
applications. However, both platforms differ in significant
ways for other types of workloads. Comparison of the two
platforms in terms of architecture, programmability, perfor-
mance, and cost is crucial for making an informative decision
between them. A benchmarking application called OpenRTiST
has proposed in [6] for Augmented Reality. For the evaluation
purpose, the authors performed tests on the edge cloud, the
public cloud, and the device for the considered application.
The reported results shown that the edge cloud outperforms
public cloud.

Moreover, microservices offer both possibilities and difficul-
ties for maximising utilisation and quality of service (QoS).
They substantially modify a number of underlying presump-
tions used in the design of existing public cloud systems.
In [7], an open-source DeathStarbench bechmark suite has
proposed for end-to-end microservices. The authors investi-
gated how the scale-out effects of microservice deployments
in datacenters with hundreds of users. Thus, the development
of MEC and the provision of services are crucial.

The deployment of our proposed MEC is described as
follows:

Technology Innovation Hub on Autonomous Navigation (Ti-
HAN) is an interdisciplinary research initiative on smart
mobility technologies to enable autonomous navigation appli-
cations. As part of TIHAN, a test bed was set up at the Indian
Institute of Technology (IIT) Hyderabad campus which has
proving grounds, testing tracks, ground control stations, road
infrastructure including smart poles, etc.

Our objective is to build and deploy a MEC to enable vari-
ous autonomous navigation applications developed at TIHAN.
This MEC needs to be geographically co-located with the test
bed to achieve low latency. Communication from the User
Equipment (UE) to the MEC is via different network access
technologies that include wired ethernet, WiFi, DSRC, and
other intermediary nodes (e.g., switches). The UEs have an
On-Board Unit (OBU), which collects various kinds of data
such as Global Positioning System (GPS) positions, the video
feed from an on-board camera, Light Detection and Ranging
(LiDAR) data, accelerometer, gyroscope, and other parameters
in motion. This data is relayed to the MEC via a Road Side
Unit (RSU) equipped with the network access technologies
mentioned earlier.

Fig. 1 shows the outline of the TiHAN test bed layout.
The test bed covers an area of 8100 m?2. It has 16 smart poles
equipped with RSUs and connected to the switch using Optical
Fibre Cables (OFC).

ITII. TIHAN EDGE

In the conventional approach, an application communicates
with a server providing service across a network that is
typically deployed far from the user. Here, communication
involves different steps such as request fulfillment, process-
ing data, computing, and delivering the response. This ap-
proach does not satisfy the latency requirements of certain
autonomous navigation applications. In contrast, in an edge
cloud, the servers (i.e., compute resources) are deployed closer
to the user (application) where the data generated on the
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Fig. 2. TiHAN Edge (TiE) Network and Computing Architecture

network edge is processed relatively closer to the user. This
approach not only reduces latencies significantly but also
enables efficient sharing of edge cloud resources across many
applications.

This section provides different networking and computing
capabilities supported (and planned to support in the near
future) by TiHAN Edge (TiE).

A. TiE Networking Capabilities

Fig. 2 shows the current schematic of TIHAN Edge (TiE)
test bed capabilities, which includes devices such as UAVs,
UGVs, and UEs (e.g., mobile phones). These are generally
connected to RSU deployed on the smart pole using differ-
ent protocols such as WiFi, DSRC, and 5G-enabled CV2X
technologies. Here, the RSUs connect with the Multi-Access
Edge Cloud (MEC) —- namely 7iE — through intermediate
TiE access switches. Fig. 3 shows the high-level abstraction of
networking components deployed in the TIHAN testbed. The
TiE access switch is the primary network source that provides
connectivity to the whole test bed. Input to this switch is
through an Optical Fiber Cable (OFC) laid from a distribution
switch in the IITH campus. The access switch uses OFC to
connect the smart poles. Each smart pole has a switch with 10
ports for providing connectivity to RSUs like DSRC boards,
industrial WiFi, and other devices like IP Cameras mounted
on the smart pole.

B. TiE Computing Capabilities

TiE supports different computing capabilities enabled with
multiple hardware and software features. As shown in Fig. 2
(right side), currently, TiE is set up by using Kubernetes
and supports one master node and multiple worker nodes,
where the master node is capable of controlling the worker
nodes (applications), and it takes care of cluster management
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Fig. 3. TiHAN Physical Network TestBed

such as manage and configuring resources (i.e., network,
storage, assigning CPU and GPU cores, RAM allocation, etc).
Kubernetes cluster allocates the required resources for running
services associated with each application (e.g., navigation,
surveillance, etc). The pods are the smallest unit in a Kuber-
netes cluster with one or more containers running in each pod.
TiE provides the freedom to use different container images to
start services with pods like YAML Aint Markup Language
(YAML) scripts, Helm charts, and the existing container
images. Kubernetes can reserve one or multiple containers as
required, and also scales the resource horizontally or vertically
while maintaining replica sets, volume mount backups, etc.

In addition, the TiE also provides VMs and Linux Con-
tainers (LXCs) [8] with the help of ProxMox [9]. The reason
for considering the Proxmox setup is to provide Graphical
User Interface (GUI) access to users using Virtual Network
Computing (VNC) since few applications requests GUI for
their use cases like plotting and mapping. The TiE can



TABLE I
CURRENT TIE COMPUTING RESOURCES

CPU

RAM

GPU

Storage

Workstation 1

12 Cores, 24 Threads, 3.7 Ghz

64 GB, 3200 MHz

Nvidia RTX A4000, Quadro P600

1 TB HDD, 256 GB M.2 SSD

Workstation 2

16 Cores 32 Threads, 4.0 Ghz

32GB, 3200 MHz

1 x NVIDIA Quadro RTX A4000

1 TB HDD, 256 GB M.2 SSD

Workstation 3

16 Cores 32 Threads, 4.0 Ghz

32GB, 3200 MHz

1 x NVIDIA Quadro RTX A5000

1 TB HDD, 256 GB M.2 SSD

Server

8 Cores 16 Threads, 3.2 Ghz

64GB, 3200 MHz

1 TB HDD, 256 GB M.2 SSD

TABLE I
TIiE COMPUTING RESOURCES IN PROCUREMENT PIPELINE

Server CPU (2 Socket Scalable) RAM

GPU Storage

1 32 Cores, 64 Threads, 3.6 Ghz

256GB, 3200 MHz

4 x Nvidia A100 80GB | 6 x 2.4 TB SAS, 2 x 1TB M.2 SSD

2-5 32 Cores, 64 Threads, 3.6 Ghz

256GB, 3200 MHz

1 x Nvidia A40 48GB 4 x 1.8TB SAS, 2 x 1TB M.2 SSD

Total Compute 160 Cores, 320 Threads 1.28 TB

512 GB 43.2 TB SAS, 10TB SSD

also run centralized servers as services and assign different
port numbers to each service. For example, we deployed a
centralized Robot Operating System (ROS) server and expose
it to UGVs.

Moreover, TiE also supports dedicated Graphics Processing
Units (GPU) enabled pods for processing intensive applica-
tions. GPUs are shared using virtual GPU (vGPU) in order
to support multiple service requests from different applica-
tions. TiE uses Free and Open Source (FOSS) components
(Kubernetes and ProxMox), which are flexible and open to
configure to our use cases. Both ProxMox and k8s are capable
of leveraging GPU to container or VMs using Peripheral Com-
ponent Interconnect Express (PCle) pass-through or vGPU.
TiE supports huge persistent data storage with volume mounts
attached to the containers in order to store the user data (by
preventing data loss).

The services running at the TiE can benefit to achieve low
latency as the computing happens closer to the application.
Table I shows the computing resources of the existing setup
with one server and three workstations running Kubernetes
cluster and ProxMox parallelly. The current setup is sufficient
enough to run the existing services, but in the long run, there
are many services we planned to containerize and run on TiE.
So we started procuring the resources mentioned in Table II,
where each server contains two CPUs each with 16 cores (32
threads), and 256 GB of RAM. In total, TiE supports 160 cores
(320 threads) and 1.28 TB of RAM. Moreover, we have two
node types, one equipped with 4Nvidia A100 80 GB cards and
the others with 1 Nvidia A40 48 GB Card.

IV. TiE USECASES

We identified the following use cases to validate the per-
formance benefits of the MEC: (1) Pedestrian Detection,
(2) Obstacle Detection for UAVs, and (3) Monitoring and
Prediction of UAV resources.

A. Monitoring and Prediction of UAV resources

UAVs are most frequently linked for various purposes,
such as search and rescue, surveillance, traffic monitoring,
weather monitoring, and firefighting. In recent years, UAVs
have drawn a lot of interest due to their great mobility, low

cost, and adaptable deployment. Low-altitude UAV-enabled
wireless networks, in particular, may be easily established and
flexibly adjusted to improve network coverage and capacity as
compared to terrestrial networks and satellite remote commu-
nications [10], [11].
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Fig. 4. Resource Monitoring Framework

Recently, monitoring [12], [13] and alerting have drawn
more and more attention along with the expansion of in-
formation collected from the devices and the processed at
the other end. The performance monitoring of all intercon-
nected services is complicated unless there is a software tool
that manages all incoming connections and monitors them
efficiently. We use “Prometheus” [14] monitoring tool to
monitor the system resources of connected devices. Metrics are
continuously gathered from numerous services and aggregated
for viewing and monitoring at various levels of granularity.
The data received from the exporter (node exporter) can be
visualized by using the “Grafana” [15] tool. The proposed
monitoring framework is implemented at the Edge by using
all open-source tools.

Fig. 4 shows the proposed monitoring framework imple-
mented and evaluated at the TiE testbed. The framework is
mainly classified into two parts: Client/UAV cluster and the
TiE. Here, the Client/UAV cluster contains multiple UAVs, and
the resource usage on these devices is exported periodically
to the edge. On TiE, we deployed a monitoring framework
consisting of Prometheus, Grafana, Alert manager, and Fore-
casting modules.



The detailed description of the cluster and modules is as
follows:

UAV cluster: The Raspberry Pi boards are deployed at the
considered UAVs. In this, specifically for monitoring purposes,
a Node exporter is deployed to continuously export the system
resource usage metrics to the Prometheus server deployed at
the Edge. Node exporter is a collector agent that translates
system-level metrics, such as CPU and memory usage, to time-
series data format and consequently sends it to the Prometheus
server for storage. Metrics from the Node exporter can be
scraped based on pre-defined interval time. The requests from
the applications running on the UAVs are processed and
associated actions are performed by the UAV cluster.

Edge: The Kubernetes [16] based Edge deployed at the
TiE is considered to implement the monitoring framework
edge side modules. Kubernetes makes it possible to deploy
containers in Platform-as-a-Service (PaaS) clouds, with a
focus on cluster-based systems. Kubernetes supports to deploy
multiple “pods”. The following monitoring framework related
pods are deployed:

1) Prometheus — It is open-source software for environ-
mental monitoring and alerting [17]. It records real-time
indicators in a Time Series Data Base (TSDB) built
using the HTTP pull model and has a flexible query and
instant alerting functions. It makes use of its own query
language - Prometheus Query Language (PromQL) -
which enables users to pick and aggregate data as well
as perform conversions and manipulate metrics;

2) Grafana — It is an open-source system for multi-
platform analysis and interactive visualization [15].
Grafana supports a considerable number of data sources
to facilitate data visualization. The resource metrics of
the UAV cluster are scraped by Prometheus at the Edge.
The Grafana tool is used to display the metrics in a more
organized way;

3) Alert manager — As the number of activities performed
by the UAV increases and the required resources also
increases. In order to ensure that all the activities at the
UAV complete efficiently within the pre-defined thresh-
old values, the alert manager feature in the Grafana can
be used to notify the corresponding persons through dif-
ferent channels (e.g., slack, email) if any of the activity
consumes more resources than the pre-defined threshold
values. For example, CPU, memory and networking
resource usage alerts can be created for each activity
performed by the UAV.

4) Forecasting — It is a procedure used to make predictions
or estimates about the system resources (e.g., CPU,
Memory usage). The forecasting module could help to
take the action based on the resource availability at the
UAV to offload any additional activity. For example, if
required to offload video capture activity to the UAV,
it is important to know the available resource, hence a
decision can be made to offload such activity or not.
On other hand, forecasting helps to scale-in or scale-out
the resource vertically or horizontally before offloading

the activity. Thus, the forecasting module helps efficient
utilization of resources. However, the wrong prediction
may leads to over- or under-provisioning the resources.
Thus, efficient predictions algorithms are required to
avoid inefficient utilization of the resources. In this, dif-
ferent time series models are implemented to understand
the prediction accuracy.

Results — Drone Usage Monitoring and Prediction Usecase:
Fig. 5 shows the system resource captured with the Grafana
dashboard at the TiE while UAV is in IDLE mode and
FLYING mode. During the IDLE mode, the UAV consumes
CPU usage of 38% and the RAM usage of 22% was observed.
Note that some programs running on the Raspberry Pi also
contributes to the reported system resource usage. In the
case of FLYING mode, the UAV consumes CPU usage of
87% and memory usage of 23%. Here, around 40% of CPU
usage increase can be observed when moving from IDLE
to FLYING mode. However, there is no significant memory
increase between the modes as the UAV is not performing
any memory-hungry tasks.

Fig. 6 shows an example of slack alert generation. The
following tasks are performed to generate a slack alert: (i) a
sample slack channel is created; (ii) the channel is integrated
into the Grafana dashboard; and (iii) configured the alert rules.
Fig. 6 shows a sample CPU usage rule created by setting
the value to 0.01 (as the UAV is in ideal mode). In order to
generate an alert, the propellers of the UAV are powered on
and the CPU usage of the UAV is increased to 0.432. Thus,
the pre-defined CPU alert rules are triggered and generated
alerts to the slack channel as shown in Fig. 6.

Fig. 7 shows an example of implemented forecasting CPU
utilization. The following steps are performed to forecast
system resources (CPU): (i) exported CPU utilization data
(in the form of CSV) from the Grafana dashboard. For the
evaluation purpose, a shell script is implemented to export the
latest two hour data from the Grafana dashboard, and scraped
samples every 2sec. However, this periodicity can be adjusted
according to the use case considered; (ii) the exported data is
feed to the considered time series model — Long Short-Term
Memory (LSTM) algorithm to forecast the CPU utilization
of the UAV, and the LSTM parameters are configured as de-
scribed in [18]. Fig. 7 shows the obtained results as a function
of CPU utilization. The LSTM algorithm forecasts close to
the actual values. The future work of forecasting will focus
on implementing other forecasting models. The importance of
forecasting in the considered monitoring framework could help
in offloading additional activities (jobs) at the UAV, which are
running under pre-defined system resource thresholds.

B. Pedestrian Detection

Future vehicles have the ability to share data with other
vehicles (V2V), roadside infrastructure (V2I), the Internet
(V2N), pedestrians (V2P), etc. Vehicle-to-Everything (V2X)
has been proposed to describe all of these types of vehicular
communication [19]. The automobile industry believes in two



Fig. 5. Grafana Dashboard - IDLE and FLYING mode UAV system resources
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main trends with the relevance of the 5G and beyond as an au-
tomotive vision, such as automated driving and improvement
in road safety services [20]. The latter could significantly lower
the number of fatal accidents.

According to previous studies, around 50% of all fatal
accidents happen at road junctions. Thus, improving com-
munication between road signals and vehicles could help in
reducing road fatal accidents. The objective of the proposed
use case is to evaluate the performance of pedestrian detection.
Here, TiE resources are exploited to understand the latencies
involved to detect the pedestrian. Therefore, all calculations
will be carried out at the TiE before being forwarded to
the RSU which incorporates speed optimization and reduced
latency.

For example, if there are 1000 vehicles, each with a camera,
each vehicle must conduct Vulnerable Road Users (VRU)
detection individually. Instead, all of the processing is done
at the edge cloud using a single detection algorithm, and it
broadcasts the data using DSRC communication through RSUs
to all of the OBUs. This means the proposed use case with
help of TiE reduces overall processing power with improved
vehicle visibility as compared to the normal one.

In this use case, we employ a novel method of using
traffic cameras to detect pedestrians. Fig. 8 shows the pos-
sible approach to detecting the pedestrian with help of IP-
based cameras. Since the traffic cameras are fixed, their GPS
positions are fixed and known. Based on the camera angle,
when a pedestrian is detected, it is possible to identify the
location of the pedestrian with a fairly high degree of accuracy.
However, this approach would entail continuous processing
of the video stream from the traffic to identify, detect and
broadcast information about pedestrians to any UGVs. A
system to continuously process a live video stream would
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TABLE III
RTT FrROM TIE TO RSU AND AWS TO RSU
RTT [in millisec]
TiE to RSU | Public Cloud (AWS) to RSU

Minimum 0.341 15.963
Average 0.468 19.74
Max 0.869 34.068
Mdev 0.16 6.404

require significant computing power. This is a task that is well
suited to be deployed on the edge.

Fig. 8 shows the steps involved in the considered pedestrian
detection use case: (i) a service is implemented running on
the edge consuming the live video feed from the traffic
camera; (ii) the live video is streamed with the help of Real
Time Streaming Protocol (RTSP) for processing, detecting
and computing the location of pedestrians: (iii) the computed
processing information is forwarded to the RSU; (iv) Upon
receiving the information, the RSU relay to any OBU within
its vicinity or based on a publish-subscribe model.

OBU is a component that sends and receives DSRC trans-
missions and is mounted to a car. The OBU module has a
quad-core NXP Semiconductor (formerly Freescale) i.MX6
processor with 1 GB of RAM and 4 GB of NAND memory. It
features two IEEE 802.11p radios for DSRC communication:
one is dedicated to safety applications and the other switches
between control and other service channels to deliver DSRC-
based applications.

RSUs are devices mounted on traffic signals or lamp posts
near roadside intersections. These devices are alongside the
road to communicate with traffic control systems and broadcast
and receive DSRC communications (traffic signal controllers).
It gets placed along the roadside to improve V2I commu-
nication. The RSU and OBU both have i.MX6 Quad Core

processor, 1 GB RAM, and 4GB Flash. In addition, it functions
with two DSRC radios, one for service and the other for safety.
The RSU also has Ethernet interface for backhaul connectivity
with the server, a built-in 4G modem, and Wi-Fi connectivity.
A solar panel or a Power-Over-Ethernet (PoE) cable can offer
a 12V DC supply voltage to the RSU if the link is an Ethernet
connection.

Results — Pedestrian Detection Usecase: Two different
computing setups are considered to understand the impact of
latency. One from the TiE and the other from the public cloud
(Amazon Web Server — AWS) instance located in Mumbai,
India as this is geographically the closest location from the
service provider to the TiHAN testbed. The deployed AWS
instance is configured with 4 Cores and 8GB RAM, and
similar configurations are also considered for the reserved
container at the TiE.

As an initial setup, the focus is devised to understand the
latency, thus the Round Trip Times (RTTs) are evaluated from
RSU to both TiE and the public cloud. The results of the
RTT comparison are summarised in Table III. On average, the
latency measured at the TiE is 40 times lesser than that of a
public cloud server. The huge difference in the network latency
means that the end-to-end latency (i.e., RTT and compute time)
will still end up being lower for the edge cloud scenario. Note
that the live steam video processing and detection time will
be added to the latency reported in Table III. The use case
is implemented and tested on pedestrian detection using the
YOLO-V5 ML model trained on Coco dataset [21] [22].

C. Obstacle Detection for UAVs

In the previous section, we outlined how a pedestrian
detection service might be designed and deployed on the TiE.
For a more general-purpose application that can be used by
both UAVs and UGVs, we consider obstacle detection as
a use case. This experimental setup is designed to detect
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obstacles using the UAV (enabled with Raspberry Pi) deployed
in the TIHAN testbed. Note that the same be extended to
other applications —- object detection for video surveillance,
mapping, object or obstacle detection for UGVs, etc. We have
chosen the UAV setup to demonstrate the benefits of edge
cloud in a resource-constrained environment.

In this, three different computing setups are considered to
understand the impact of the processing and latency. The
three considered computing resources are located at: (i) the
TiE; (ii) the public cloud; and (ii) the on-board (Raspberry
Pi). As stated earlier, the AWS instance is also considered
for obstacle detection use case. Note that the similar tests
have been performed in evaluating a benchmarking application
called OpenRTiST [6].

Fig. 9 shows the obstacle detection using the UAV. An
onboard camera on the UAV takes images at frequent intervals
(every 500ms) and is transferred to the TiE/AWS/On-board
in the current experimental scenario. The images were taken
in different detail levels (resolutions), producing images of
varying sizes. Images with higher resolution have higher detail
and even smaller objects can be identified. However, this
comes with a cost - larger image size and more computation
time. On the other hand, a low-resolution image will have a
smaller size and will need lower computing power, but will
miss out on details and some objects may not be identified.

Results —- Obstacle Detection Usecase: The obstacle de-
tection code is deployed at the TiE, reserved AWS, and
Onboard Raspberry pi. The UAV located in the TiHAN testbed
is used as a client and started detecting the objects. This code
uses a REST API call and use 7 images of sizes ranging from
8.2 KB to 10.5 MB. The experiment is repeated for 50 times
for each image and measured the end-to-end time, that is,
the total time taken from the request initiation to the time
response was received. We considered three different image
resolutions for this use case: a low-resolution image (8.2KB),
a medium-resolution image (2.4MB), and a high-resolution
image (10.5MB). For objection detection, we used the YOLO-
v3 ML model trained on the coco dataset [23]. The results
are summarized in Table IV. For all image sizes, the results
show that there is a clear benefit of using the edge cloud

(TiE) compared to the public cloud and Onboard processing.
Fig. 10 shows transfer time (i.e., response time) as a function
of multiple image sizes. This also confirms the advantage of
using edge cloud deployment independent of the image size.

V. DISCUSSION ON TECHNICAL AND PRACTICAL
CHALLENGES

A. GPU Sharing

Sharing GPU resources across applications is not a straight-
forward task. The applications mentioned above, like pedes-
trian detection, telecontrol, or obstacle detection, have image
inference components requiring heavy GPU resources. The key
question is How do we share a GPU across multiple applica-
tions?. One approach is to use pass-through mode, which is a
technology in most hypervisors. They use PCle pass-through
mechanism and share GPU from the host machine to the VM
or container directly. The second option is vVGPUs in NVIDIA
cards which can slice up the GPU into multiple cores and
assign them to the VM or container requesting GPU resources.
Since vCPU is quite common, this notion of vGPU being
common did not work — the number of types of GPU cards
supporting this feature is limited and expensive, and currently,
only a few types of cards from NVIDIA support vGPU.

B. Latency

The acceptable end-to-end latency for 5G URLLC appli-
cations is in the order of tens of milliseconds, whereas the
observed latency in TiE is in the order of hundreds of mil-
liseconds (e.g., image inference at TiE). This requires careful
inspection of packets both at each hop and across hops. How-
ever, it is challenging to understand, correlate, and pinpoint
the hop(s) causing significant delays because intermediate
hops are heterogeneous devices with hardware from different
vendors, thus, they must be time synchronized with either
external or internal sources. Initially, we tried with an external
UTC as a source, but accuracy is not always guaranteed.
Thus, without time synchronization, analyzing delays at the
milliseconds level is infeasible or hard. Moreover, software
running on some embedded devices provides timestamps at
the granularity of seconds, not at milliseconds. In our future
work, we plan to profile per-hop latencies and reduce delays
either by optimizing the device code or by using a fast network
path.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented TiE, an edge cloud for au-
tonomous navigation applications, and demonstrated three use
cases that leverage compute resources at TiE and offloaded
compute-heavy tasks. As a next step, we plan to identify
a small set of common services essential for a wide range
of autonomous navigation applications and expose those ser-
vices as APIs. By doing so, any UAV/UGYV, irrespective of
hardware or software running on board, can make calls to
these APIs, thus making UAV/UGV software management
easier while at the same time enabling the services to a large
number of devices. For example, consider image inference.



TABLE IV
END-TO-END LATENCY: TIME TAKEN (IN SECONDS) TO TRANSFER, PROCESS, AND DETECT OBJECTS IN AN IMAGE.

Small Image [8.2kb]

Medium Image [2.4MB]

Large Image [10.5MB]

TiE Public Cloud | On board | TiE

Public Cloud

On board | TiE Public Cloud | On board

Minimum | 0.324 0.635 4.682 0.694

1.129 5.898 1.443 2.006 7.958

Average 0.343 1.784 9.503 0.695

2.117 5.944 1.443 2.477 7.982

Median 0.343 1.784 9.503 0.695

2.117 5.944 1.443 2.477 7.982

Maximum | 0.345 2.904 14.244 0.696

3.105 5.99 1.444 2.949 7.982

90% 0.345 0.955 4.781 0.705

2.25 5.956 1.464 3.121 8.099

TiE Cloud = Public Cloud On Board
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Fig. 10. Average Transmission time of TiE, public cloud, and onboard

There are multiple micro-tasks, including but not limited to
traffic light detection, traffic sign identification, road marking
detection, scene understanding, and depth perception. These
tasks can be deployed as individual services on the edge
cloud, in the spirit of micro-services, and process requests
from UAVs/UGVs. Also, we plan to profile the performance
of exposed services, especially those that require multiple
interactions among micro-services, and evaluate performance
under different loads. Enabling private 5G for the testbed and
securing the exposed services are also part of our future work.
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