Real-time UAV Resource Monitoring and Alerts
with Automated Control Mechanism

Nisarg Parekh*, Rajashekhar Reddy Tella®, Lavanya Malakalapalli T, Praveen Tammana®, Koteswararao Kondepu'
t Department of Computer Science and Engineering, IIT Dharwad, Dharwad, India
* Department of Smart Mobility, IIT Hyderabad, Hyderabad, India
¥ Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad, India
Email: {200030058, k.kondepu} @iitdh.ac.in

Abstract—Autonomous navigation in Unmanned Aerial Ve-
hicles (UAVs) is a crucial and rapidly advancing field with a
wide range of applications. It utilizes various deep learning
(DL) algorithms that enable UAVs to operate and navigate
autonomously, reducing the need for direct human interven-
tion. However, the use of DL algorithms demands significant
computational resources, which can lead to resource constraints,
potentially disrupting ongoing operations and compromising UAV
safety. This work focuses on establishing a real-time monitoring,
alerting, and automated control framework for UAV system
resources. The proposed framework alerts the user/operator if
system resource utilization exceeds the threshold. Furthermore,
the automated controlling mechanism guarantees that resource
consumption is adequately monitored and kept below predefined
boundaries, lowering the danger of resource depletion and UAV
damage. The suggested framework provides a powerful and
efficient solution for optimal utilization of the available UAV
system resources. By tackling the critical issue of system resource
consumption, the suggested framework helps to achieve the
larger goal of enabling the widespread adoption of autonomous
navigation.

Index Terms—UAV resources monitoring, Alerting Resources,
Automated Control Mechanism, Prometheus, Grafana, Kafka

I. INTRODUCTION

The increasing interest in autonomous navigation has paved
the way for various applications, ranging from autonomous
driving to drone delivery systems and drone swarming [1].
Unmanned Aerial Vehicles (UAVs), known as autonomous
drones, have become invaluable tools in addressing critical
humanitarian needs, such as delivering essential medicines to
remote areas to aid in disaster relief operations [2] and traffic
surveillance. In order to accomplish these tasks successfully,
UAVs rely on access to satellite positioning system informa-
tion and the ability to actively learn about their surroundings
through image inference to avoid obstacles and navigate safely.

However, performing real-time or near-real-time inference
with computationally intensive algorithms like You Only Look
Once (YOLO) [3] necessitates significant resources. Mounting
the required resources directly onto the UAV poses several
challenges as there is a limitation on the payload capacity
of the UAV. Firstly, these power-hungry algorithms consume
precious battery power, diverting it from the primary task of
sustaining the UAV’s flight and secondly, the additional weight
of the resources further reduces the UAV’s flight duration,

compromising its overall efficiency and effectiveness of the
missions.In order to carry out these power-hungry applications
on the UAYV, real-time monitoring of resource consumption is
a must, if ignored it might damage the UAV resources by
over-utilizing them.

Both Monitoring and alerting have recently received more
attention, as there is an expansion of information acquired
from devices and processed at the other end [4]. Monitoring
detects excessive resource utilization and allows for prompt
notification to the appropriate team (i.e, UAV operator/User).
This proactive approach guarantees that any anomalies (i.e., a
rapid increase in power consumption) are addressed as soon
as possible to avoid negative impacts on the UAV resources.

By monitoring the resources of UAVs in real-time, we can
address the following objectives:

o Efficient Resource Management: Continuously track the
resource usage of each drone so that we can maximize
the utilization of resources and minimize downtime

e Prevent Damage and Loss: Detect potential system fail-
ures proactively and take corrective actions to avoid
collisions and minimize the risk of damage to the drones
and their surroundings

A work in [5] develops the monitoring and alerting frame-
work for the UAV resources without employing the control-
ling mechanism to take towards the alerts. The authors in
[6] used Grafana [7] and Zabbix to provide alerts on the
failures that occur in wireless networks for internet service
access. In this work, we investigate the notion of real-time
resource monitoring, alerting, and automatically controlling
resources of UAVs. Here, an alert-based control mechanism
capable of successfully managing resource usage is created
when it surpasses a predefined threshold; therefore preventing
collisions and minimizing the risk of harm to drones and their
surroundings

II. SYSTEM MODEL

Fig. 1 shows the architecture of UAV resources monitor-
ing and automated controlling mechanism of resources. The
framework mainly consists of an UAV cluster and an Edge
cluster. The UAV cluster contains multiple UAVs that can be
useful for achieving the desired tasks. The Edge cluster has the
Prometheus server [8] which scrapes the system metrics from

UAV Cluster

(VAV1© 8 | Jwerrics (D
Prometheus
-
Server
uAv-3 D & < OW)
UAN € 88)iont (] metrcs (D |
[

9 Control the Resources

Edge Cluster
o Resource Monitoring

(| Alert
“05 Notification
Kafka
Producer via
webhook

9 Resource Alerting

7o)\

O

H
Kafka Consumer §€

Fig. 1. System Architecture

the node exporter deployed on the UAVs at the UAV cluster.
A detailed description of the clusters and their components is
as follows:

UAV cluster: This cluster contains the UAVs that are
mounted with Raspberry Pi (RPi) boards — to carry out
various tasks like object detection, object tracking, video
recording, etc. The following activities are performed at the
UAV cluster: (i) node exporter is deployed in the RPi board
to continuously expose the system resource usage metrics to
the Prometheus server deployed at the Edge for monitoring;
(ii) metrics from the Node exporter can be scraped based on
predefined interval time; (iii) the requests from the applications
running on the UAVs are processed, and corresponding actions
are performed by the UAV cluster [5]; (iv) the Kafka consumer
is integrated into the UAV cluster, thus the system can effi-
ciently process alerts and automatically implement corrective
measures to maintain resource usage within acceptable limits.

Edge Cluster: The Edge cluster contains the proposed
monitoring framework with the following components: (i)
Prometheus: It is an open-source tool that is used to monitor
the system metrics of the defined target. It uses an HTTP pull
model for time series collection, It can be used to monitor
multiple targets. Prometheus provides comprehensive querying
capabilities and quick alerting functionalities as crucial com-
ponents for edge cluster monitoring; (i) Grafana: Grafana
is an open-source solution for monitoring and visualization.
Prometheus scrapes the UAV cluster’s resource metrics in the
context of the edge cluster and it is added as a data source
in Grafana. Grafana has in-built dashboards that can be used
to view the parameters/system metrics in a more facile and
straightforward way; (iii) Alert Manager: Grafana has an in-
built Alert Manager that allows to customize alert rules and
add notification channels. It sends the desired alerts to the
configured channels when the resource being monitored is
used more than the desired value. Notifications can be given
across numerous channels such as Slack, Email, etc. ensuring
rapid response and intervention as required; (iv) Kafka: Kafka
is a distributed streaming technology that allows for the
publication and subscription of record streams [9]. Kafka acts
as a messaging system within the edge cluster, processing
alerts created by the alert manager. It ensures dependable and
flexible communication between system components.

The UAV clusters are deployed with the node exporters
as mentioned above and expose the system metrics to the
Prometheus which is running on the Edge cluster. The

Prometheus scrapes the metrics periodically and sends them to
the Grafana server for visualization and alerting. The Grafana
is configured with alerting rules, predefined thresholds, and
notification channels (Fig. 1). A Kafka topic is created on
the Edge cluster which acts as a producer and the created
topic is subscribed by the UAVs making them the consumer. A
webhook (i.e., an HTTP callback for real-time communication
between different services) is created between the Grafana-
based alert manager and the Kafka producer that is running
on the Edge cluster. Grafana sends an alert to the slack channel
and webhook when any monitored resource usages exceed
the threshold. Upon receiving the alert, the webhook on the
Edge cluster writes it to the topic, which is read on the
Kafka consumer side. After receiving the alerts, the Kafka
consumer checks which resource is being over-utilized and
takes a control action based on that. The Kafka consumer
action may involve interrupting the program that might be
consuming the highest CPU usage or the user can decide based
on the importance of the programs (or jobs) that are running
in the system. In addition, instead of complete termination of
running jobs, the user could decide to pause certain tasks or
reallocate or reschedule the jobs to later in time, depending
on the availability of the system resources. All this automated
controlling mechanism is shown in Fig. 2.

UAV-2
KConsumer2

UAV-1
KConsumerl

UAV-N
] KConsumerN

< R < >
Kafka cluster « o0

Brokerl 88 Broker2 $8 BrokerN 88
| Topict. eoo [parva] |

[Topic e e [ponv1] |
|
m—»{ webhook }—-»[KProducer | Edge Cluster

Fig. 2. Automated controlling mechanism using Kafka cluster
The following performance metrics are evaluated in the
below experiments:

UAV Cluster

e CPU Usage: It is a metric representing the CPU utiliza-
tion degree. It’s an indicator of how much computational
work the CPU is currently performing relative to its
maximum capacity.

e RAM Usage: It refers to the amount of Random Access
Memory (RAM) that is currently being utilized or con-
sumed by a system, process, or application at a given
moment.

III. EXPERIMENTAL RESULTS
A. Resource Monitoring

The resource consumption of UAVs can vary depending on
their operational mode and the algorithms they are running.
As shown in Fig. 3, we can observe a progressive increase
in CPU usage as the UAV carries out different tasks. In
the experimental setup, the UAV was initially in an idle
state, with CPU usage hovering around 3%. Subsequently,

Task#1, involving autonomous take-off and propeller activa-
tion, led to a significant spike in CPU usage, reaching 56%.
Following that, Task#2 involved recording and transmitting
video to an Edge cluster, increasing CPU usage to 78%.
Finally, Task#3 involved onboard object detection using the
YOLOV3 algorithm. This task pushed the CPU usage to its
peak at 98%, triggering an alert. In response to this alert,
all running processes were immediately aborted, bringing the
CPU usage back to its initial idle state of 3%. The observed

TASK#1 + TASK#2 + TASK#3

TA§KH1 + TASK#2

TASK#1

PROCESSES \NTERRUPTED

Fig. 3. Grafana Dashboard - Showing Resource Usage for Tasks Execution
substantial difference of approximately 50% in CPU usage
when transitioning from IDLE to FLYING mode highlights
the significant impact of algorithm execution on resource
consumption. This information through monitoring enables us
to optimally decide the thresholds for alerting and efficiently
use the available UAV system resources.

B. Resources Alerting

Monitoring the resources can help the operator (i.e., the
user) to know the status of system resources and take corre-
sponding action. We created a sample alert rule with a thresh-
old value of 80% CPU usage to trigger an alert when CPU
usage exceeds the pre-defined threshold value. To simulate a
scenario where the CPU usage surpasses the threshold, the
propellers of a UAV are powered on and initiate the task of
object detection on captured frames.

1 firing alert(s), O resolved alert(s)
There are 1 firing alert(s), and O resolved alert(s)

Firing alerts: Metric name lnst-a;ce Currentzvalue
- TherCTJU-B-U?;Y Alemngjof |nstance{____33:3_§:9£03) |s€’9 600)1
I3 Grafanav10.1.1 Today at 1:30 AM

Fig. 4. An example of slack alerts generation with Grafana-based alert
manager

The Fig. 4 depicts the Slack alert received from the alert
manager, providing details such as the alert name, instance,
and the actual value of the metric usage.

C. Automated Control Mechanism

In order to handle the automated controlling of the re-
sources, the thresholds are defined in two different levels,
namely (i) warning alert — where the alert is generated when
the utilization exceeds 60%, which does not require any action
to be taken — and (ii) critical alert — where the alert is
generated when the utilization exceeds 80% and require a
strict action to reduce the resource usage from the some of the
running processes (i.e, jobs). Depending on the above-defined
threshold alert values, the Kafka consumer (or the UAV) takes
appropriate action to control the system resources.

Upon the consumer takes action, resource usage is expected
to decrease, eventually falling back within the predefined
threshold limits.

Simultaneously, the alert manager continues to monitor the
resources and detects when the resource usage is back to
normal within the pre-defined threshold values. Once this
condition is reached, the alert manager publishes a resolved
message to the Kafka topic. The Kafka consumer then con-
sumes the resolved message. Based on its value, the user might
decide to resume the paused jobs if possible or adjust its
behavior back to normal operation.

Fig. 5 shows both the warning, critical, and the resolved
alert received at the Kafka consumer.

: pvthon3 kafkaconsumer.py
Warning alert
76.24687239365478

Current Value -

HHR BRI R R R R S R R i R
Critical:CPU Usage has reached 80% ~ Terminated the ongoing processes

Current Value - 99.60039960041505

##
—

The CPU_BUSY warn has_been resolved |

Fig. 5. Alert received at Kafka Consumer
IV. CONCLUSION AND FUTURE WORK

The UAV resource monitoring and alert system offers a
full resource management solution for UAV operations. The
system not only detects anomalies but also provides a warning
alert. It also includes an automated control mechanism to
balance system resources. The proposed UAV framework is
capable of monitoring several UAVs at the same time, which is
particularly useful in scenarios incorporating swarms of drones
or massive amounts of UAV deployments. The measured
automated control response time is 10us — the time taken
to act upon the Kafka consumer receiving a resource control
critical alert from the producer. The potential future work
of this paper is to build a framework that uses a Machine
Learning approach like GANs or Reinforcement Learning and
provides the alerts beforehand based on the forecasted data.

REFERENCES

[1] E. Frachtenberg, “Practical Drone Delivery,”
pp. 53-57, 2019.

[2] B. P. A. Rohman, M. B. Andra et al., “Multisensory Surveillance Drone
for Survivor Detection and Geolocalization in Complex Post-Disaster
Environment,” in IGARSS 2019 - 2019 IEEE International Geoscience
and Remote Sensing Symposium, 2019, pp. 9368-9371.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[4] K. Hitchcock, Monitoring. Berkeley, CA: Apress, 2022, pp. 203-240.

[5] Y.C.Makkena, R. R. Tella, N. Parekh et al., “Experience: Implementation
of Edge-Cloud for Autonomous Navigation Applications,” in in Proc. 15th
COMSNETS, 2023, pp. 579-587.

[6] A. R. H. Velasco, E. E. G. Malla, R. D. C. C. Herrera, and F. D. M.
Arévalo, “Real-time monitoring and alerting system using zabbix and
grafana software for wireless internet access service management.” in
2023 18th Iberian Conference on Information Systems and Technologies
(CISTI), 2023, pp. 1-6.

[7] Grafana. [Online]. Available: https://github.com/grafana/grafana

[8] Prometheus. [Online]. Available: https:/prometheus.io

[9] Apache Kafka. [Online]. Available: https://kafka.apache.org/

Computer, vol. 52, no. 12,

